Thermostat for nonequilibrium multiparticle-collision-dynamics simulations.
نویسندگان
چکیده
Multiparticle collision dynamics (MPC), a particle-based mesoscale simulation technique for complex fluid, is widely employed in nonequilibrium simulations of soft matter systems. To maintain a defined thermodynamic state, thermalization of the fluid is often required for certain MPC variants. We investigate the influence of three thermostats on the nonequilibrium properties of a MPC fluid under shear or in Poiseuille flow. In all cases, the local velocities are scaled by a factor, which is either determined via a local simple scaling approach (LSS), a Monte Carlo-like procedure (MCS), or by the Maxwell-Boltzmann distribution of kinetic energy (MBS). We find that the various scaling schemes leave the flow profile unchanged and maintain the local temperature well. The fluid viscosities extracted from the various simulations are in close agreement. Moreover, the numerically determined viscosities are in remarkably good agreement with the respective theoretically predicted values. At equilibrium, the calculation of the dynamic structure factor reveals that the MBS method closely resembles an isothermal ensemble, whereas the MCS procedure exhibits signatures of an adiabatic system at larger collision-time steps. Since the velocity distribution of the LSS approach is non-Gaussian, we recommend to apply the MBS thermostat, which has been shown to produce the correct velocity distribution even under nonequilibrium conditions.
منابع مشابه
Hydrodynamic fluctuations in thermostatted multiparticle collision dynamics.
In this work we study the behavior of mesoscopic fluctuations of a fluid simulated by Multiparticle Collision Dynamics when this is applied together with a local thermostatting procedure that constrains the strength of temperature fluctuations. We consider procedures in which the thermostat interacts with the fluid at every simulation step as well as cases in which the thermostat is applied onl...
متن کاملBulk viscosity of multiparticle collision dynamics fluids.
We determine the viscosity parameters of the multiparticle collision dynamics (MPC) approach, a particle-based mesoscale hydrodynamic simulation method for fluids. We perform analytical calculations and verify our results by simulations. The stochastic rotation dynamics and the Andersen thermostat variant of MPC are considered, both with and without angular momentum conservation. As an importan...
متن کاملMultiple time step nonequilibrium molecular dynamics simulation of the rheological properties of liquid n-decane
Nonequilibrium and equilibrium molecular dynamics simulations are reported for a united-atom model of n-decane at a state point in the liquid phase. The viscosity calculated by our nonequilibrium molecular dynamics simulations is in good agreement with that obtained from our equilibrium molecular dynamics simulations via the Green–Kubo relation and with that obtained by Mundy et al. @J. Chem. P...
متن کاملHamiltonian for a restricted isoenergetic thermostat.
Nonequilibrium molecular dynamics simulations often use mechanisms called thermostats to regulate the temperature. A Hamiltonian is presented for the case of the isoenergetic (constant internal energy) thermostat corresponding to a tunable isokinetic (constant kinetic energy) thermostat, for which a Hamiltonian has recently been given.
متن کاملProperties of stationary nonequilibrium states in the thermostatted periodic Lorentz gas: the multiparticle system.
We study the stationary nonequilibrium states of N-point particles moving under the influence of an electric field E among fixed obstacles (disk) in a two-dimensional torus. The total kinetic energy of the system is kept constant through a Gaussian thermostat that produces a velocity dependent mean field interaction between the particles. The current and the particle distribution functions are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 91 1 شماره
صفحات -
تاریخ انتشار 2015